By Topic

A First-Order Representation of Pure Type Systems Using Superdeduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Burel, G. ; Nancy-Univ., Nancy

Superdeduction is a formalism closely related to deduction modulo which permits to enrich a deduction system - especially a first-order one such as natural deduction or sequent calculus - with new inference rules automatically computed from the presentation of a theory. We give a natural encoding from every functional pure type system (PTS) into superdeduction by defining an appropriate first-order theory. We prove that this translation is correct and conservative, showing a correspondence between valid typing judgments in the PTS and provable sequents in the corresponding superdeductive system. As a byproduct, we also introduce the superdeductive sequent calculus for intuitionistic logic, which was until now only defined for classical logic. We show its equivalence with the superdeductive natural deduction. This implies that superdeduction can be easily used as a logical framework. These results lead to a better understanding of the implementation and the automation of proof search for PTS, as well as to more cooperation between proof assistants.

Published in:

Logic in Computer Science, 2008. LICS '08. 23rd Annual IEEE Symposium on

Date of Conference:

24-27 June 2008