Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

On Sequence Prediction for Arbitrary Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ryabko, D. ; IDSIA, Manno-Lugano ; Hutter, M.

Suppose we are given two probability measures on the set of one-way infinite finite-alphabet sequences. Consider the question when one of the measures predicts the other, that is, when conditional probabilities converge (in a certain sense), if one of the measures is chosen to generate the sequence. This question may be considered a refinement of the problem of sequence prediction in its most general formulation: for a given class of probability measures, does there exist a measure which predicts all of the measures in the class? To address this problem, we find some conditions on local absolute continuity which are sufficient for prediction and generalize several different notions that are known to be sufficient for prediction. We also formulate some open questions to outline a direction for finding the conditions on classes of measures for which prediction is possible.

Published in:

Information Theory, 2007. ISIT 2007. IEEE International Symposium on

Date of Conference:

24-29 June 2007