By Topic

Writing on Dirty Paper with Resizing and its Application to Quasi-Static Fading Broadcast Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenyi Zhang ; Commun. Sci. Inst., Univ. of Southern California, Los Angeles, CA ; Kotagiri, S. ; Laneman, J.N.

This paper studies a variant of the classical problem of "writing on dirty paper" in which the sum of the input and the interference, or dirt, is multiplied by a random variable that models resizing, known to the decoder but not to the encoder. The achievable rate of Costa's dirty paper coding (DPC) scheme is calculated and compared to the case of the decoder's also knowing the dirt. In the ergodic case, the corresponding rate loss vanishes asymptotically in the limits of both high and low signal-to-noise ratio (SNR), and is small at all finite SNR for typical distributions like Rayleigh, Rician, and Nakagami. In the quasi-static case, the DPC scheme is lossless at all SNR in terms of outage probability. Quasi-static fading broadcast channels (BC) without transmit channel state information (CSI) are investigated as an application of the robustness properties. It is shown that the DPC scheme leads to an outage achievable rate region that strictly dominates that of time division.

Published in:

Information Theory, 2007. ISIT 2007. IEEE International Symposium on

Date of Conference:

24-29 June 2007