Cart (Loading....) | Create Account
Close category search window
 

Adapting Synchronizers to the Effects of on Chip Variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhou ; Newcastle Univ., Newcastle upon Tyne ; Kinniment, D. ; Russell, G. ; Yakovlev, A.

Two adaptation schemes based on on-chip measurement of failure rates have been proposed to reduce the effects of process, voltage, temperature and data rate variations on synchronizers on chip. One scheme is to select the best synchronizer out of a number to improve the synchronizer performance subject to process variation on chip. Compared to increasing the transistor size, this scheme can further reduce the effects of process variation without increasing the power consumption. The other scheme is to improve the performance of the system by adjusting the synchronization time according to the actual process, voltage, temperature and data rate variations on the condition that the required MTBF is met. It is targeted at overdesigned synchronization times due to synchronizer performance variability. To assess their feasibility, the two schemes have been implemented using a Xilinxpsilas 90 nm FPGA Spartan 3. The on-chip overhead for the Synchronizer Selection scheme in terms of equivalent flipflops and gates is 9 and 6. For the Synchronization Time Adjustment scheme it is 33 and 104.

Published in:

Asynchronous Circuits and Systems, 2008. ASYNC '08. 14th IEEE International Symposium on

Date of Conference:

7-10 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.