Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

A Multi-objective Genetic Algorithm for Design Space Exploration in High-Level Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ferrandi, F. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milano ; Lanzi, P.L. ; Loiacono, D. ; Pilato, C.
more authors

This paper presents a methodology for design space exploration (DSE) in high-level synthesis (HLS), based on a multi-objective genetic algorithm. Since all high-level synthesis sub-tasks are notoriously NP-complete and interdependent and the design objectives are in conflict for nature, most of the already proposed approaches are not efficient in the exploration of this design space and not effective in the identification of different trade-offs. For these reasons, evolutionary algorithms can be considered as good candidates to tackle such difficult explorations. Therefore, we will compare our proposed approach, using different solution encoding, with a publicly available HLS framework and we will show that this approach is able to obtain better optimization results, with respect to the design objectives (latency and area have been considered for optimization), in most of situations and our proposed encoding better approaches the situations when multi-modal functional units (e.g. Arithmetic Logic Units) could be used in the final design solutions.

Published in:

Symposium on VLSI, 2008. ISVLSI '08. IEEE Computer Society Annual

Date of Conference:

7-9 April 2008