By Topic

3D-Stacked Memory Architectures for Multi-core Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gabriel H. Loh ; Coll. of Comput., Georgia Inst. of Technol., Athens, GA

Three-dimensional integration enables stacking memory directly on top of a microprocessor, thereby significantly reducing wire delay between the two. Previous studies have examined the performance benefits of such an approach, but all of these works only consider commodity 2D DRAM organizations. In this work, we explore more aggressive 3D DRAM organizations that make better use of the additional die-to-die bandwidth provided by 3D stacking, as well as the additional transistor count. Our simulation results show that with a few simple changes to the 3D-DRAM organization, we can achieve a 1.75x speedup over previously proposed 3D-DRAM approaches on our memory-intensive multi-programmed workloads on a quad-core processor. The significant increase in memory system performance makes the L2 miss handling architecture (MHA) a new bottleneck, which we address by combining a novel data structure called the Vector Bloom Filter with dynamic MSHR capacity tuning. Our scalable L2 MHA yields an additional 17.8% performance improvement over our 3D-stacked memory architecture.

Published in:

Computer Architecture, 2008. ISCA '08. 35th International Symposium on

Date of Conference:

21-25 June 2008