By Topic

Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic \ell _{0} -Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Trzasko, J. ; Center for Adv. Imaging Res., Mayo Clinic Coll. of Med., Rochester, MN ; Manduca, A.

In clinical magnetic resonance imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in compressive sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some transform domain can be accurately reconstructed from very highly undersampled K-space data by solving a convex lscr1-minimization problem. Although lscr1-based techniques are extremely powerful, they inherently require a degree of over-sampling above the theoretical minimum sampling rate to guarantee that exact reconstruction can be achieved. In this paper, we propose a generalization of the CS paradigm based on homotopic approximation of the lscr0 quasi-norm and show how MR image reconstruction can be pushed even further below the Nyquist limit and significantly closer to the theoretical bound. Following a brief review of standard CS methods and the developed theoretical extensions, several example MRI reconstructions from highly undersampled K-space data are presented.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 1 )