Cart (Loading....) | Create Account
Close category search window
 

In Situ Characterization of the Degradation of PLGA Microspheres in Hyaluronic Acid Hydrogels by Optical Coherence Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patterson, J. ; Dept. of Bioeng., Univ. of Washington, Seattle, WA ; Stayton, Patrick S. ; Xingde Li

The polymeric implant material poly(lactide-co-glycolide) (PLGA) degrades by a process of bulk degradation, which allows it to be used for the controlled release of therapeutic molecules from implants and microspheres. The temporal characterization of PLGA microsphere degradation has been limited by the need to destructively monitor the samples at each time point. In this study, a noninvasive imaging technology, optical coherence tomography (OCT), was utilized to characterize the in situ degradation of PLGA microspheres suspended within photo-crosslinked hyaluronic acid (HA) hydrogels. Microspheres with differing degradation rates were loaded with bovine serum albumin (BSA) as a marker protein, and temporal release of protein was correlated with morphological changes observed during 3-D OCT imaging. As proof-of-principle, a microsphere-loaded hydrogel scaffold was implanted in a modified rat calvarial critical size defect model and imaged using OCT. This animal model presents the opportunity to monitor microsphere degradation over time in living animals.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.