By Topic

Compact CMOS current conveyor for integrated NEMS resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
J. Arcamone ; Centro Nac. de Microelectron. - CSIC, Inst. de Microelectron. de Barcelona, Bellaterra ; B. Misischi ; F. Serra-Graells ; M. A. F. Van Den Boogaart
more authors

A fully integrated nanoelectromechanical system (NEMS) resonator together with a compact built-in complementary metal-oxide-semiconductor (CMOS) interfacing circuitry is presented. The proposed low-power second generation current conveyor circuit allows measuring the mechanical frequency response of the nanocantilever structure in the megahertz range. Detailed experimental results at different DC biasing conditions and pressure levels are presented for a real mixed electromechanical system integrated through a combination of in-house standard CMOS technology and nanodevice post-processing based on nanostencil lithography. The proposed readout circuit can be adapted to operate the nanocantilever in closed loop as a stand-alone oscillator.

Published in:

IET Circuits, Devices & Systems  (Volume:2 ,  Issue: 3 )