By Topic

A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lili He ; Dept. of Radiol., Massachusetts Gen. Hosp., Boston, MA ; Greenshields Ian, R.

Postacquisition denoising of magnetic resonance (MR) images is of importance for clinical diagnosis and computerized analysis, such as tissue classification and segmentation. It has been shown that the noise in MR magnitude images follows a Rician distribution, which is signal-dependent when signal-to-noise ratio (SNR) is low. It is particularly difficult to remove the random fluctuations and bias introduced by Rician noise. The objective of this paper is to estimate the noise free signal from MR magnitude images. We model images as random fields and assume that pixels which have similar neighborhoods come from the same distribution. We propose a nonlocal maximum likelihood (NLML) estimation method for Rician noise reduction. Our method yields an optimal estimation result that is more accurate in recovering the true signal from Rician noise than NL means algorithm in the sense of SNR, contrast, and method error. We demonstrate that NLML performs better than the conventional local maximum likelihood (LML) estimation method in preserving and defining sharp tissue boundaries in terms of a well-defined sharpness metric while also having superior performance in method error.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 2 )