By Topic

Predictive design space exploration using genetically programmed response surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cook, H. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA ; Skadron, K.

Exponential increases in architectural design complexity threaten to make traditional processor design optimization techniques intractable. Genetically programmed response surfaces (GPRS) address this challenge by transforming the optimization process from a lengthy series of detailed simulations into the tractable formulation and rapid evaluation of a predictive model. We validate GPRS methodology on realistic processor design spaces and compare it to recently proposed techniques for predictive microarchitectural design space exploration.

Published in:

Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE

Date of Conference:

8-13 June 2008