Cart (Loading....) | Create Account
Close category search window
 

Comparison of robust strategies for the control of gene regulatory networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, R. ; Electr. & Comput. Eng., Texas Tech Univ., Lubbock, TX ; Datta, A. ; Dougherty, E.

The presence of noise and the availability of a limited number of samples prevent the transition probabilities of a gene regulatory network from being accurately estimated. Thus, it is important to study the effect of modeling errors on the final outcome of an intervention strategy and to design robust intervention strategies. Two major approaches applied to the design of robust policies in general are the Mini-Max (worst case) approach and the Bayesian approach. In this paper we will compare the Minimax, Bayesian and Global robustness approach with respect to intervention in genetic regulatory networks.

Published in:

Genomic Signal Processing and Statistics, 2008. GENSiPS 2008. IEEE International Workshop on

Date of Conference:

8-10 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.