By Topic

Multifrequency channel decompositions of images and wavelet models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. G. Mallat ; Courant Inst. of Math. Sci., New York Univ., NY, USA

The author reviews recent multichannel models developed in psychophysiology, computer vision, and image processing. In psychophysiology, multichannel models have been particularly successful in explaining some low-level processing in the visual cortex. The expansion of a function into several frequency channels provides a representation which is intermediate between a spatial and a Fourier representation. The author describes the mathematical properties of such decompositions and introduces the wavelet transform. He reviews the classical multiresolution pyramidal transforms developed in computer vision and shows how they relate to the decomposition of an image into a wavelet orthonormal basis. He discusses the properties of the zero crossings of multifrequency channels. Zero-crossing representations are particularly well adapted for pattern recognition in computer vision

Published in:

IEEE Transactions on Acoustics, Speech, and Signal Processing  (Volume:37 ,  Issue: 12 )