By Topic

A fast method for prior probability selection based on maximum entropy principle and Gibbs sampler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Dianat ; Sharif University of Technology, Iran ; S. Kasaei ; M. Khabbazian

One of the problems in Bayesian inference is the prior selection. We can categorize different methods for selecting prior into two main groups: informative and non-informative. Here, we have considered an informative method called filters random filed and minimax entropy (FRAME). Despite of its theoretical interest, that method introduces a huge amount of computational burden, which makes it very unsuitable for real-time applications. The main critical point of the method is its parameter estimation part, which plays a major role in its very low speed. In this paper, we have introduced a fast method for parameter estimation to fasten the FRAME approach. Although the kernel of our approach is the Gibbs sampler that intrinsically has very low speed, our proposed method has led to a proper speed.

Published in:

Signal Processing and Its Applications, 2007. ISSPA 2007. 9th International Symposium on

Date of Conference:

12-15 Feb. 2007