By Topic

Matrix based computation of floating-point roundoff noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Van Veen, B.D. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Baraniuk, R.

A matrix-based procedure is presented for computing the output roundoff power for filters implemented with floating-point arithmetic. The filter's computational structure is represented in terms of a product of matrices, known as a factored state variable description. The quantities needed to compute the output roundoff noise power are obtained from the factored state variable description by matrix manipulation. The expression for output roundoff noise power is shown to be of the same form as that for fixed-point arithmetic roundoff noise. Comparison indicates that, under very general conditions, fixed-point arithmetic provides better roundoff noise performance than floating-point arithmetic. Several examples are provided

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:37 ,  Issue: 12 )