Cart (Loading....) | Create Account
Close category search window
 

Thresholds for LDPC codes over OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Iyengar, Aravind ; Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, India 600036 ; Dileep, M.K. ; Thangaraj, A. ; Bhashyam, S.

Low Density Parity Check (LDPC) codes have been proven to perform very close to the Shannon limit with low complexity encoders and decoders. The experimental proof of existence of codes that achieve a rate 0.0045 dB from the Shannon-capacity for Binary Input Additive White Gaussian Noise Channels (BIAWGN) is a big impetus for exploring similar codes and encoding-decoding schemes for other channels. In this work, our aim is to make fundamental comparisons between the performances of LDPC codes on an Inter-Symbol Interference (ISI) channel under two competing equalization methods — the time-domain BCJR algorithm and the frequency-domain Orthogonal Frequency Division Multiplexing (OFDM). Thresholds for LDPC codes with the BCJR algorithm have been derived and proved in prior work by Kavcic et al. In this paper, we study thresholds for LDPC codes over an OFDM system. We develop a rigorous density evolution method (without Gaussian approximations) to prove the existence of thresholds for LDPC codes over OFDM and evaluate the thresholds for various regular LDPC codes. We compare the OFDM thresholds with BCJR thresholds and draw some useful conclusions for code design.

Published in:

Communication Systems Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference on

Date of Conference:

6-10 Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.