By Topic

Automatic techniques for gridding CDNA microarray images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naima Kaabouch ; Department of Electrical Engineering, University of North Dakota, Grand Forks, 58202-7165, USA ; Hamid Shahbazkia

Microarray is considered an important instrument and powerful new technology for large-scale gene sequence and gene expression analysis. One of the major challenges of this technique is the image processing phase. The accuracy of this phase has an important impact on the accuracy and effectiveness of the subsequent gene expression and identification analysis. The processing can be organized mainly into four steps: gridding, spot isolation, segmentation, and quantification. Although several commercial software packages are now available, microarray image analysis still requires some intervention by the user, and thus a certain level of image processing expertise. This paper describes and compares four techniques that perform automatic gridding and spot isolation. The proposed techniques are based on template matching technique, standard deviation, sum, and derivative of these profiles. Experimental results show that the accuracy of the derivative of the sum profile is highly accurate compared to other techniques for good and poor quality microarray images.

Published in:

2008 IEEE International Conference on Electro/Information Technology

Date of Conference:

18-20 May 2008