By Topic

Improvement of Target Detection Methods by Multiway Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Renard, N. ; Multidimensional Signal Process. Group, Fresnel Inst., Marseille ; Bourennane, S.

Detection and classification are key issues in processing hyperspectral images (HSIs). Spectral-identification-based algorithms are sensitive to spectral variability and noise in acquisition. In this paper, we propose two detection algorithms that are robust to noise. These algorithms consist in integrating spatial/spectral filtering into the adaptive matched filter and adaptive coherence/cosine estimator. Considering the HSI as tensor data, our approach introduces a data representation involving multilinear algebra. It combines the advantages of spatial and spectral information using an alternating least squares algorithm. To estimate the signal subspace dimension in each mode, we extended the Akaike information criterion and the minimum description length criterion. We demonstrate that integrating a multiway restoration leads to significant improvement of the detection probability. The performance of our method is exemplified using simulated and real-world Hyperspectral Digital Imagery Collection Experiment images.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 8 )