By Topic

High-performance, low-latency field-programmable gate array-based floating-point adder and multiplier units in a Virtex 4

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karlstrom, P. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping ; Ehliar, A. ; Liu, D.

There is increasing interest about floating-point arithmetics in field programmable gate arrays (FPGAs) because of the increase in their size and performance. FPGAs are generally good at bit manipulations and fixed-point arithmetics, but they have a harder time coping with floating-point arithmetics. An architecture used to construct high-performance floating-point components in a Virtex-4 FPGA is described in detail. Floating-point adder/subtracter and multiplier units have been constructed. The adder/subtracter can operate at a frequency of 377 MHz in a Virtex-4SX35 (speed grade -12).

Published in:

Computers & Digital Techniques, IET  (Volume:2 ,  Issue: 4 )