By Topic

Sign Language Spotting with a Threshold Model Based on Conditional Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hee-Deok Yang ; Dept. of Comput. Sci. & Eng., Korea Univ., Seoul ; Sclaroff, S. ; Seong-Whan Lee

Sign language spotting is the task of detecting and recognizing signs in a signed utterance, in a set vocabulary. The difficulty of sign language spotting is that instances of signs vary in both motion and appearance. Moreover, signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and nonsign patterns (which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing threshold models in a conditional random field (CRF) model is proposed which performs an adaptive threshold for distinguishing between signs in a vocabulary and nonsign patterns. A short-sign detector, a hand appearance-based sign verification method, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experiments demonstrate that our system can spot signs from continuous data with an 87.0 percent spotting rate and can recognize signs from isolated data with a 93.5 percent recognition rate versus 73.5 percent and 85.4 percent, respectively, for CRFs without a threshold model, short-sign detection, subsign reasoning, and hand appearance-based sign verification. Our system can also achieve a 15.0 percent sign error rate (SER) from continuous data and a 6.4 percent SER from isolated data versus 76.2 percent and 14.5 percent, respectively, for conventional CRFs.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 7 )