Cart (Loading....) | Create Account
Close category search window

Nature of convection-stabilized DC arcs in dual-flow nozzle geometry. II. Optical diagnostics and theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Serbetci, I. ; Dept. of Mech. Eng., Rensselaer Polytech. Inst., Troy, NY, USA ; Nagamatsu, H.T.

For pt.I see ibid., vol.18, no.1, p.91-101, 1990. A supersonic flow field with a 5.5-cm-long and ≈2.2-mm-thick cylindrical arc plasma column was observed with a four-mirror Schlieren optical system in dual-flow nozzle geometries. For both the orifice-type nozzle and the two dimensional convergent-divergent nozzle, the arc current was varied from 45 to 110 A. The optical cold-flow-plasma boundary displayed a sharp and laminar character in both nozzles, and a sharply defined, almost-constant-diameter, quiet arc is observed between the nozzles. Downstream of the nozzle throat the arc expands and assumes a conical shape. In this region, the fringe formation inside the arc is still clear, which is an indication of the laminar nature of the plasma. However, the arc boundary is not as distinct. A cooler arc is observed downstream of the nozzle throat. Using the experimentally determined axial static pressure and cold-flow mass flux rate distributions of pt.I and the channel-flow model with constant arc temperature, the energy integral was solved for the arc radius as a function of the axial distance. From this, the arc electric field strength, voltage, resistance, and power were determined, and the total heat transfer was related to the arc power. Good agreement between the calculated values and experimental data was observed

Published in:

Plasma Science, IEEE Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb 1990

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.