Cart (Loading....) | Create Account
Close category search window
 

Nature of convection-stabilized DC arcs in dual-flow nozzle geometry. I. The cold flow field and DC arc characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

An experimental investigation of the steady-state low current air arcs in a dual-flow nozzle system is presented. The cold flow field with no arc was determined for various nozzle geometries, i.e. two- and three-dimensional and orifice nozzles, and nozzle pressure ratios. Supersonic flow separation and oblique and detached shock waves were observed in the flow field. Using a finite-element computer program, the Mach number contours were determined in the flow field for various nozzle-gap spacings and pressure ratios. In addition, the DC arc voltage and current measurements were made for an electrode gap spacing of ≈5.5 cm and current levels of I≈25, 50, and 100 A for the three nozzle geometries. The arc voltage and arc power increased rapidly as the flow speed increased from zero to sonic velocity at the nozzle throat. The shock waves in the converging-diverging nozzles resulted in a decrease in the overall resistance by about 15%

Published in:

Plasma Science, IEEE Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.