Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

High-Frequency Modeling of Power Transformers for Use in Frequency Response Analysis (FRA)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abeywickrama, N. ; Div. of High Voltage Eng., Chalmers Univ. of Technol., Gothenburg ; Serdyuk, Y.V. ; Gubanski, S.M.

This paper presents an advanced model of the frequency response of a three-phase power transformer for use in conjunction with diagnostic measurements by the method of frequency response analysis (FRA). The model includes high- frequency behavior of the laminated core and the insulation through taking into account the frequency dependencies of the complex permittivity of insulation materials (paper, pressboard, and oil) and of the anisotropic complex permeability of magnetic core and conductors. A lumped parameter circuit model is used to simulate the frequency response of open-circuit impedance, short-circuit impedance, and impedance between primary and secondary windings, in which the characteristics of circuit elements are calculated by means of the finite-element method. The effect of correct representation of each circuit element on the FRA response is analyzed and discussed in comparison to measurement results on a real transformer.

Published in:

Power Delivery, IEEE Transactions on  (Volume:23 ,  Issue: 4 )