Cart (Loading....) | Create Account
Close category search window
 

NetQuest: A Flexible Framework for Large-Scale Network Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han Hee Song ; Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX ; Lili Qiu ; Yin Zhang

In this paper, we present NetQuest, a flexible framework for large-scale network measurement. We apply Bayesian experimental design to select active measurements that maximize the amount of information we gain about the network path properties subject to given resource constraints. We then apply network inference techniques to reconstruct the properties of interest based on the partial, indirect observations we get through these measurements.By casting network measurement in a general Bayesian decision theoretic framework, we achieve flexibility. Our framework can support a variety of design requirements, including i) differentiated design for providing better resolution to certain parts of the network; ii) augmented design for conducting additional measurements given existing observations; and iii) joint design for supporting multiple users who are interested in different parts of the network. Our framework is also scalable and can design measurement experiments that span thousands of routers and end hosts. We develop a toolkit that realizes the framework on PlanetLab. We conduct extensive evaluation using both real traces and synthetic data. Our results show that the approach can accurately estimate network-wide and individual path properties by only monitoring within 2%-10% of paths. We also demonstrate its effectiveness in providing differentiated monitoring, supporting continuous monitoring, and satisfying the requirements of multiple users.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 1 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.