Cart (Loading....) | Create Account
Close category search window
 

Characterization and Testing of a Skin Mimicking Material for Implantable Antennas Operating at ISM Band (2.4 GHz-2.48 GHz)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yilmaz, T. ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS ; Karacolak, T. ; Topsakal, E.

In this study, we present a simple recipe for a skin mimicking material intended for in vitro testing of implantable antennas operating at Industrial, Scientific, and Medical (ISM) (2.4 GHz2.48 GHz) band. The material is composed of de-ionized water, Triton X-100, and Diethylene Glycol Butyl Ether (DGBE). The relative dielectric constant and conductivity of the proposed material are within 0.5% and 3.4% of the properties of the reference human skin from the literature in the entire ISM band. In order to test the transmission characteristics of the material, in vitro measurements of a dual-band antenna are performed.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:7 )

Date of Publication:

2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.