By Topic

Long-Lifetime Power Inverter for Photovoltaic AC Modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cuauhtemoc Rodriguez ; Electromech. Group, Cambridge Consultants Ltd., Cambridge ; Gehan A. J. Amaratunga

This paper presents a power inverter tailored for low-power photovoltaic (PV) systems. The inverter features high reliability, thanks to a circuit topology that obviates aluminum electrolytic capacitors from the circuit. Moreover, all components, including logic and control, have been designed to exhibit high reliability at high temperatures. Three conversion stages form the power topology. First, a full bridge connected to a high-frequency transformer and a full-bridge rectifier amplifies the voltage of the PV panel to approximately 475 V. This stage is controlled by using a phase-shift pulsewidth-modulation controller that permits zero-voltage switching, thereby minimizing losses. Second, a buck converter is connected in series with the rectifier and is controlled by using current mode in order to shape the current injection into a rectified sine wave. Last, a full bridge is operated at line frequency to unfold the current injection. The amplification stage has a proportional compensator that maintains the voltage at the PV terminals constant. The current injection stage has a proportional-derivative compensator that controls the amplitude of the grid current so that the dc-link average voltage is maintained constant. Experimental results show that the peak efficiency of the system is 89%, and the total current harmonic distortion is below 5%. Finally, analyses show a designed lifetime of approximately ten years.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:55 ,  Issue: 7 )