Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Resistive Control for a Photovoltaic Battery Charging System Using a Microcontroller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, J.H. ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul ; Bae, H.S. ; Cho, B.H.

A new control algorithm has been developed, consisting of a buck-type dc/dc converter, which is used in a parallel-operated photovoltaic battery charging system. From the past research, it has been analyzed that the current loop that is generally used in the parallel operation of the power conditioner has an inherent stability problem in the large-signal domain in the photovoltaic system. The proposed algorithm directly transforms the effective input characteristic of the converter seen by the solar array into a resistive load, which is controlled by a microcontroller-based unit. Thus, the resulting system eliminates the instability associated with the current loop in the photovoltaic system. In addition, it is simple, flexible, and easily expandable. To analyze the effects of the one-sample delay caused by the digital controller, the emulated function in the case of average current mode control is modeled using small-signal approaches, and the design criteria are presented. The experimental results from 180-W prototype hardware show that the proposed algorithm has a simple implementation structure and can stabilize the system in the entire region of the solar array.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 7 )