Cart (Loading....) | Create Account
Close category search window
 

Features and Design Constraints for an Optimized SC Front-End Circuit for Capacitive Sensors With a Wide Dynamic Range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heidary, A. ; Dept. of Microelectron. & Comput. Eng., Delft Univ. of Technol., Delft ; Meijer, G.C.M.

This paper presents optimization criteria for an integrated switched-capacitor front-end circuit for capacitive sensors with a wide dynamic range. The principle of the interface is based on the use of a relaxation oscillator. A negative-feedback circuit controls the charge-transfer speed to prevent the overload of the input amplifier for large input signals which thus enables a wide dynamic range of capacitor values. Moreover, it has been shown that the use of negative feedback can also result in much better noise performance. However, for the interface to function properly, there is a serious limitation for the value of a specific parasitic capacitance. Therefore, a method which extends the acceptable range of this parasitic capacitance is proposed. A novel method of linearity measurement which takes the influence of PCB parasitic capacitances into account, is also presented. The circuit has been designed and implemented in 0.7 mum standard CMOS technology. The supply voltage is 5 V and the measured value for the supply current is about 1.4 mA. Experimental results show that for the capacitor range of 1 pF to 300 pF, application of negative feedback yields a linearity of about 50 x10-6 (14 bits) with a 16-bit resolution for a measurement time of 100 ms. Tests have been performed over the temperature range from to .

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.