By Topic

A New Converter Transformer and a Corresponding Inductive Filtering Method for HVDC Transmission System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Longfu Luo ; Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha ; Yong Li ; Jiazhu Xu ; Ji Li
more authors

A new converter transformer and an inductive filtering method are presented to solve the existing problems of the traditional converter transformer and the passive filtering method of the high-voltage direct current (HVDC) system. It adopts the ampere-turn balance of the transformer as the filtering mechanism. A tap at the linking point of the prolonged winding and the common winding of the secondary windings is connected with the LC resonance circuit. It can realize the goal that once theharmonic current flowsinto the prolonged winding, the common winding will induct the opposite harmonic current to balance it by the zero impedance design of the common winding and the proper configuration of LC parameters, so there will be no inductive harmonic current in the primary winding. Moreover, the reactive power that the converter needs can be partly compensated in the secondary winding. Simulation results have verified the correctness of the theoretical analysis. The new converter transformer can greatly reduce the harmonic content in the primary winding, loss, and noise generated by harmonics in the transformer, and the difficulty of the transformer's insulation design.

Published in:

Power Delivery, IEEE Transactions on  (Volume:23 ,  Issue: 3 )