Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Optimal Intervention in Asynchronous Genetic Regulatory Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Faryabi, B. ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX ; Chamberland, J.-F. ; Vahedi, G. ; Datta, A.
more authors

There is an ongoing effort to design optimal intervention strategies for discrete state-space synchronous genetic regulatory networks in the context of probabilistic Boolean networks; however, to date, there has been no corresponding effort for asynchronous networks. This paper addresses this issue by postulating two asynchronous extensions of probabilistic Boolean networks and developing control policies for both. The first extension introduces deterministic gene-level asynchronism into the constituent Boolean networks of the probabilistic Boolean network, thereby providing the ability to cope with temporal context sensitivity. The second extension introduces asynchronism at the level of the gene activity profiles. Whereas control policies for both standard probabilistic Boolean networks and the first proposed extension are characterized within the framework of Markov decision processes, asynchronism at the profile level results in control being treated in the framework of semi-Markov decision processes. The advantage of the second model is the ability to obtain the necessary timing information from sequences of gene-activity profile measurements. Results from the theory of stochastic control are leveraged to determine optimal intervention strategies for each class of proposed asynchronous regulatory networks, the objective being to reduce the time duration that the system spends in undesirable states.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:2 ,  Issue: 3 )