By Topic

Design and analysis of a dual radio node architecture and medium access control protocols for Ultra Wide Band based sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ravichandran, Karthikeyan ; Department of CSEE, University of Maryland, Baltimore County (UMBC), 21250, USA ; Krishna Sivalingam ; Agrawal, P.

In this paper, we consider the problem of employing UltraWideBand (UWB) radio technology in Wireless Sensor Networks. UWB promises very high data rates (of the order of few hundred Mbps), in-built localization features and low power consumption. However, UWB radios have a high acquisition time (in the order of milliseconds). As a result, distributed Medium Access Control (MAC) solutions based on a Request/Response mechanisms suffer from increased overhead when employed in UWB based networks. To mitigate the effect of UWB acquisition time, we propose a node architecture that uses dual radios on the sensor nodes: a primary UWB-based radio for data transmission and an auxiliary narrowband RF-based radio for control information and signaling. We introduce two techniques for Medium Access based on this architecture. In the first technique, we employ the narrowband channel for the exchange of RTS/CTS (as defined in IEEE 802.11 standard) information and thus enable collision-free data transmission in the UWB space. In the second technique, we employ the concept of wake-up radios to provide signaling for data transmission. We employ a distributed channel assignment technique by which neighbors agree on a wake-up channel for each node. This channel is then used to signal the receiver of an impending transmission. Through extensive simulation studies, we demonstrate that both the techniques deliver considerable improvements in delay performance and increase the network throughput over the traditional single radio UWB solution.

Published in:

Broadband Communications, Networks and Systems, 2007. BROADNETS 2007. Fourth International Conference on

Date of Conference:

10-14 Sept. 2007