By Topic

Tin/silver/copper alloy nanoparticle pastes for low temperature lead-free interconnect applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongjin Jiang ; Sch. of Mater. Sci. & Eng. & Packaging Res. Center, Georgia Inst. of Technol., Atlanta, GA ; Kyoung-Sik Moon ; Wong, C.P.

Chemical reduction methods were used to synthesize tin/silver/copper (SnAgCu) alloy nanoparticles with various sizes. The thermal properties of the SnAgCu alloy nanoparticles were studied by differential scanning calorimetry. Both the particle size dependent melting temperature and latent heat of fusion have been observed. The as-synthesized SnAgCu alloy nanoparticles were dispersed into an acidic type flux to form the nano solder pastes. Their wetting properties on the cleaned copper surface were studied. It was found that the nanoparticle pastes completely melted and wetted on the copper surface and the tin and copper intermetallic compounds formed. These low melting point SnAgCu alloy nanoparticles could be used for low temperature lead-free interconnect applications.

Published in:

Electronic Components and Technology Conference, 2008. ECTC 2008. 58th

Date of Conference:

27-30 May 2008