Cart (Loading....) | Create Account
Close category search window
 

An acceleration model for lead-free (SAC) solder joint reliability under thermal cycling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vasudevan, V. ; Intel Corp., Hillsboro, OR ; Xuejun Fan

The electronics industry has successfully transitioned from Sn/Pb to Pb free (LF) solder for computing and consumer electronics applications. However, there is no industry-wide standardized LF solder joint reliability model (neither empirical nor FEA-based) available for solder fatigue reliability assessment. A LF solder fatigue model has been proposed in this paper based on a 3-parameter modified Coffin-Manson approach. The proposed model showed best fit to the experimental data (17 pairs of temperature cycle test data) from different sources for multiple package types and sizes including various test conditions. The model fit to the experimental data was excellent and the error was less than 6%. This analysis showed that the LF acceleration factor (AF) model is not significantly different from the Sn/Pb model and proposed model provides best fit to experimental results.

Published in:

Electronic Components and Technology Conference, 2008. ECTC 2008. 58th

Date of Conference:

27-30 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.