By Topic

A Subspace Model-Based Approach to Face Relighting Under Unknown Lighting and Poses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyunjung Shim ; Carnegie Mellon Univ., Pittsburgh, PA ; Jiebo Luo ; Tsuhan Chen

We present a new approach to face relighting by jointly estimating the pose, reflectance functions, and lighting from as few as one image of a face. Upon such estimation, we can synthesize the face image under any prescribed new lighting condition. In contrast to commonly used face shape models or shape-dependent models, we neither recover nor assume the 3-D face shape during the estimation process. Instead, we train a pose- and pixel-dependent subspace model of the reflectance function using a face database that contains samples of pose and illumination for a large number of individuals (e.g., the CMU PIE database and the Yale database). Using this subspace model, we can estimate the pose, the reflectance functions, and the lighting condition of any given face image. Our approach lends itself to practical applications thanks to many desirable properties, including the preservation of the non-Lambertian skin reflectance properties and facial hair, as well as reproduction of various shadows on the face. Extensive experiments show that, compared to recent representative face relighting techniques, our method successfully produces better results, in terms of subjective and objective quality, without reconstructing a 3-D shape.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 8 )