By Topic

Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Plonka, G. ; Dept. of Math., Univ. of Duisburg- Essen, Duisburg ; Jianwei Ma

Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 8 )