By Topic

Wavelet-Based Semiblind Channel Estimation for Ultrawideband OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seyed Mohammad Sajad Sadough ; Fac. of Electr. & Comput. Eng., Shahid Beheshti Univ., Tehran ; Mahieddine M. Ichir ; Pierre Duhamel ; Emmanuel Jaffrot

Ultrawideband (UWB) communications involve very sparse channels, because the bandwidth increase results in a better time resolution. This property is used in this paper to propose an efficient algorithm that jointly estimates the channel and the transmitted symbols. More precisely, this paper introduces an expectation-maximization (EM) algorithm within a wavelet-domain Bayesian framework for semiblind channel estimation of multiband orthogonal frequency division multiplexing based UWB communications. A prior distribution is chosen for the wavelet coefficients of the unknown channel impulse response to model a sparseness property of the wavelet representation. This prior yields, in maximum a posteriori estimation, a thresholding rule within the EM algorithm. We particularly focus on reducing the number of estimated parameters by iteratively discarding ldquoinsignificantrdquo wavelet coefficients from the estimation process. Simulation results using UWB channels that were issued from both models and measurements show that, under sparseness conditions, the proposed algorithm outperforms pilot-based channel estimation in terms of the mean square error (MSE) and bit error rate (BER). Moreover, the estimation accuracy is improved, whereas the computational complexity is reduced compared with traditional semiblind methods.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:58 ,  Issue: 3 )