By Topic

A Knowledge-based Segmentation Method Integrating both Region and Boundary Information of Medical Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianwei Dong ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shanghai ; Shi Zhang ; Lihuang She

In this article, the author proposed a hybrid segmentation method which integrates region, boundary and priori knowledge information of medical images. The basic algorithm of this method is level set active contours. The speed function is initialized according to the gradient of the image, and is modified according to statistical characteristic of the segmented regions as the curve evolves. To make the curve stop accurately at the boundary of the object, an energy function is constructed by improving Chan-Vese model. The priori knowledge of the region of interest (ROI) is also integrated into this energy function. The experiment data consists of both simulated images and real clinical images. Precision, accuracy and efficiency are considered in evaluating this method. The evaluation result shows that this method is robust, accurate and has high performance, especially when the boundary is weak or dotted.

Published in:

BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on  (Volume:1 )

Date of Conference:

27-30 May 2008