Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Experimental evaluation of postdetection diversity reception of narrow-band digital FM signals in Rayleigh fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adachi, F. ; NTT Radio Commun. Syst. Lab., Kanagawa, Japan ; Ohno, K.

Postdetection diversity is attractive for narrowband digital FM signal reception because the cophasing function, which may be difficult to realize in a fast Rayleigh fading environment, is not required. The combining scheme evaluated here is to weight each frequency demodulator (FD) output in proportion to the νth power of the received signal envelope of that branch. Maximum diversity improvement can be obtained with ν=2 (this combiner is referred to as a postdetection maximal ratio chamber (MRC)). Experimental results are presented on postdetection diversity reception in the Gaussian minimum shift keying (GMSK) signal transmission system. Diversity combining and FD-decision algorithms (decision feedback equalizer (DFE) and maximum-likelihood sequence estimator (MLSE)) are performed by software on a computer using the data of the sampled FD output and received signal envelope obtained from a laboratory transmission system. It is shown that the MRC can attain about a 1-dB larger diversity gain than the selection combiner (SC) when two-branch diversity is used. The degradations of two-branch diversity improvement caused by the differences between demodulator sensitivities and between received signal envelope detector gains are evaluated

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:38 ,  Issue: 4 )