Cart (Loading....) | Create Account
Close category search window
 

The New MPEG-4/FAMC Standard for Animated 3D Mesh Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Mamou, K. ; ARTEMIS Dept., Inst. TELECOM / TELECOM & Manage. SudParis, Evry ; Stefanoski, N. ; Kirchhoffer, H. ; Muller, K.
more authors

This paper presents a new compression technique for 3D dynamic meshes, referred to as FAMC - Frame-based Animated Mesh Compression, recently promoted within the MPEG-4 standard as Amen-dement 2 of part 16 (AFX -Animation Framework extension). The FAMC approach combines a model-based motion-compensation strategy with transform/predictive coding of residual errors. First, a skinning motion-compensation model is automatically derived from a frame-based representation. Subsequently, either 1) DCT/lifting wavelets or 2) layer-based predictive coding is employed to exploit remaining spatio-temporal correlations in the residual signal. Both motion model parameters and residual signal components are finally encoded by using context-based adaptive binary arithmetic coding (CABAC). The proposed FAMC encoder offers high compression performance with gains of 60% in terms of bit-rate savings relative to previous MPEG-4 technology and of 20% to 40% relative to state-of-the-art techniques. FAMC is well suited for compressing both geometric and photometric (normal vectors, colors...) attributes. In addition, FAMC also supports a rich set of functionalities including streaming, scalability (spatial, temporal and quality) and progressive transmission.

Published in:

3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008

Date of Conference:

28-30 May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.