By Topic

Traffic and Quality Characterization of Single-Layer Video Streams Encoded with the H.264/MPEG-4 Advanced Video Coding Standard and Scalable Video Coding Extension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van der Auwera, G. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ ; David, P. ; Reisslein, M.

The recently developed H.264/AVC video codec with scalable video coding (SVC) extension, compresses non-scalable (single-layer) and scalable video significantly more efficiently than MPEG-4 Part 2. Since the traffic characteristics of encoded video have a significant impact on its network transport, we examine the bit rate-distortion and bit rate variability-distortion performance of single-layer video traffic of the H.264/AVC codec and SVC extension using long CIF resolution videos. We also compare the traffic characteristics of the hierarchical B frames (SVC) versus classical B frames. In addition, we examine the impact of frame size smoothing on the video traffic to mitigate the effect of bit rate variabilities. We find that compared to MPEG-4 Part 2, the H.264/AVC codec and SVC extension achieve lower average bit rates at the expense of significantly increased traffic variabilities that remain at a high level even with smoothing. Through simulations we investigate the implications of this increase in rate variability on (i) frame losses when transmitting a single video, and (ii) on a bufferless statistical multiplexing scenario with restricted link capacity and information loss. We find increased frame losses, and rate-distortion/rate-variability/encoding complexity tradeoffs. We conclude that solely assessing bit rate-distortion improvements of video encoder technologies is not sufficient to predict the performance in specific networked application scenarios.

Published in:

Broadcasting, IEEE Transactions on  (Volume:54 ,  Issue: 3 )