By Topic

Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Roham, M. ; Electr. Eng. & Comput. Sci. Dept., Case Western Reserve Univ., Cleveland, OH ; Halpern, J.M. ; Martin, H.B. ; Chiel, H.J.
more authors

An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order DeltaSigma modulator (DeltaSigmaM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 mum double-poly triple-metal n -well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~ 250 fA, ~ 1.5 pA, ~ 4.5 pA, and ~ 17 pA were achieved for input currents in the range of plusmn5, plusmn37, plusmn150, and plusmn600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 muM wirelessly over a transmission distance of ~ 0.5 m in flow injection analysis experiments.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 11 )