By Topic

Vestibulo-Ocular Responses Evoked Via Bilateral Electrical Stimulation of the Lateral Semicircular Canals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wangsong Gong ; Jenks Vestibular Physiol. Lab., Massachusetts Eye & Ear Infirmary, Boston, MA ; Haburcakova, C. ; Merfeld, D.M.

We investigated the vestibulo-ocular responses (VORs) evoked by bilateral electrical stimulation of the nerves innervating horizontal semicircular canals in squirrel monkeys and compared these responses to those evoked by unilateral stimulation. In response to sinusoidal modulation of the electrical pulse rate, the VOR for bilateral stimulation roughly equals the addition of the responses evoked by unilateral right ear and unilateral left ear stimulation; the VOR time constants were about the same for bilateral and unilateral stimulation and both were much shorter than for normal animals. In response to individual pulse stimulation, the VOR evoked by bilateral stimulation closely matches the point-by-point addition of responses evoked by unilateral right ear and unilateral left ear stimulation. We conclude that, to first order, the VOR responses evoked by bilateral stimulation are the summation of the responses evoked by unilateral stimulation. These findings suggest that-from a physiologic viewpoint-unilateral and bilateral vestibular prostheses are about equally viable. Given these findings, one possible advantage of a bilateral prosthesis is higher gain. However, at least for short-term stimulation such as that studied herein, no inherent advantage in terms of the response time constant (ldquovelocity storagerdquo) was found.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 11 )