By Topic

Subspace-Based Algorithm for Parameter Estimation of Polynomial Phase Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuntao Wu ; Sch. of Comput. Sci. & Eng., Wuhan Inst. of Technol., Wuhan ; Hing Cheung So ; Hongqing Liu

In this correspondence, parameter estimation of a polynomial phase signal (PPS) in additive white Gaussian noise is addressed. Assuming that the order of the PPS is at least 3, the basic idea is first to separate its phase parameters into two sets by a novel signal transformation procedure, and then the multiple signal classification (MUSIC) method is utilized for joint estimating the phase parameters with second-order and above. In doing so, the parameter search dimension is reduced by a half as compared to the maximum likelihood and nonlinear least squares approaches. In particular, the problem of cubic phase signal estimation is studied in detail and its simplification for a chirp signal is given. The effectiveness of the proposed approach is also demonstrated by comparing with several conventional techniques via computer simulations.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 10 )