Cart (Loading....) | Create Account
Close category search window
 

Analysis and Modeling of On-Chip Charge Pump Designs Basedon Pumping Gain Increase Circuits With a Resistive Load

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Huei Hu ; Electr. & Control Eng. Dept., Nat. Chiao Tung Univ., Hsinchu ; Lon-Kou Chang

A complete equivalent model and analysis of high-efficiency charge-pump gain-increase (PGI) circuits with resistive loads are proposed. Based on this simple analytical model, the characteristics of PGI circuits can be approximately predicted and several handy equations, which are useful for pencil-and-paper design, can also be found for planning the desired circuit to achieve good enough performance with an acceptable accuracy tolerance in the steady state. In addition, an optimized design method for PGI circuits with resistive loads is developed in terms of the total number of gain stages in the design and the ratio between pump capacitors. For 1.5 V supply voltage operation, reliability and accuracy are demonstrated by comparisons between SPICE simulations of the PGI circuit and the results from the equivalent model. The model also has been validated by means of measurements taken from a test chip and typically shows relative open-loop output voltage errors lower than 8%. Finally, although the derivation of the model was based on a PGI circuit, it is shown that the design strategy can also be applied to other charge pump designs that have no voltage drop between the inner stages and the output stage.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.