By Topic

High-performance medical image registration using improved particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Jin ; Dept. of Control Sci. & Eng., Harbin Inst. of Technol., Harbin ; Qiang Wang ; Yi Shen

Optimization of a similarity metric is an essential component in intensity-based medical image registration. In this paper, an improved variable neighborhood selection based particle swarm optimization (VNS-PSO) is proposed. The PSO algorithm is co-operative, population-based global search swarm intelligence mataheuristics. The improved version of PSO algorithm possesses better ability to escape from the local minima to the global optimum, and more adapts for intensity-based medical image registration. The performances of VNS-PSO algorithm and downhill simplex method to medical image registration are compared. Experimental results demonstrate that the improved VNS-PSO method is robust, accurate, efficient and more suitable for medical image registration.

Published in:

Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE

Date of Conference:

12-15 May 2008