By Topic

A Framework of Machine Learning Based Intrusion Detection for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhenwei Yu ; World Evolved Services, LLC, New York, NY ; Jeffrey J. P. Tsai

Some security protocols or mechanisms have been designed for wireless sensor networks (WSNs). However, an intrusion detection system (IDS) should always be deployed on security critical applications to defense in depth. Due to the resource constraints, the intrusion detection system for traditional network cannot be used directly in WSNs. Several schemes have been proposed to detect intrusions in wireless sensor networks. But most of them aim on some specific attacks (e.g. selective forwarding) or attacks on particular layers, such as media access layer or routing layer. In this paper, we present a framework of machine learning based intrusion detection system for wireless sensor networks. Our system will not be limited on particular attacks, while machine learning algorithm helps to build detection model from training data automatically, which will save human labor from writing signature of attacks or specifying the normal behavior of a sensor node.

Published in:

Sensor Networks, Ubiquitous and Trustworthy Computing, 2008. SUTC '08. IEEE International Conference on

Date of Conference:

11-13 June 2008