By Topic

Cross Entropy Approximation of Structured Gaussian Covariance Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Yuan Liou ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei ; Musicus, B.R.

We apply two variations of the principle of minimum cross entropy (the Kullback information measure) to fit parameterized probability density models to observed data densities. For an array beamforming problem with P incident narrowband point sources, sensors, and colored noise, both approaches yield eigenvector fitting methods similar to that of the MUSIC algorithm and of the oblique transformation in factor analysis. Furthermore, the corresponding cross entropies (CE) are related to the MDL model order selection criterion .

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 7 )