Cart (Loading....) | Create Account
Close category search window
 

Utilizing the Spatial Information Provided by Channel Norm Feedback in SDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

To achieve high performance, in terms of reliability and throughput, in future multiple-antenna communication systems, it is essential to fully exploit the spatial dimensions of the wireless propagation channel. In multiuser communication systems, the throughput can be significantly increased by simultaneously transmitting to several users in the same time-frequency slot by means of spatial-division multi-access (SDMA). A major limiting factor for downlink SDMA transmission is the amount of channel-state information (CSI) that is available at the transmitter. In most cases, CSI can be measured/estimated only at the user terminals and must be fed back to the base station. This procedure typically constrains the amount of CSI that can be conveyed to the base station. Herein, we develop several low-complexity, as well as optimized, SDMA downlink resource-allocation schemes that are particularly suitable for systems utilizing statistical channel information and partial CSI feedback. A framework is proposed for combining statistical channel information with a class of instantaneous channel norms. It is shown that, in wide-area scenarios, the feedback of such a scalar norm provides sufficient information for the proposed resource-allocation algorithms to perform efficient SDMA beamforming (BF) and scheduling.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.