By Topic

Stochastic Maximum-Likelihood DOA Estimation in the Presence of Unknown Nonuniform Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chiao En Chen ; Electr. Eng. Dept., Univ. of California, Los Angeles, CA ; Flavio Lorenzelli ; Ralph. E. Hudson ; Kung Yao

This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihood (ML) DOA estimator under this model have been derived by Pesavento and Gershman, the stochastic ML DOA estimator under the same setting is still not available in the literature. In this correspondence, a new stochastic ML DOA estimator is derived. Its implementation is based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion. A modified inverse iteration algorithm is also presented for the estimation of the noise parameters. Simulation results have shown that the proposed algorithm is able to provide significant performance improvement over the conventional uniform ML estimator in nonuniform noise environments and require only a few iterations to converge to the nonuniform stochastic CRB.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 7 )