Cart (Loading....) | Create Account
Close category search window
 

Evaluation of Melt-Grown, ZnO Single Crystals for Use as Alpha-Particle Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Neal, J.S. ; Oak Ridge Nat. Lab., Inst. of Phys., Oak Ridge, TN ; Giles, N.C. ; Xiaocheng Yang ; Wall, R.A.
more authors

As part of an ongoing investigation of the scintillation properties of zinc-oxide-(ZnO)-based scintillators, several melt-grown, ZnO single crystals have been characterized using alpha-particle excitation, infrared reflectance, and room temperature photoluminescence. The crystals, grown by Cermet, Inc., using an oxygen-pressurized melt-growth process, were doped with Group 1 elements (Li), Group 2 elements (Mg), Group 3 elements (Ga, In) and lanthanides (Gd, Er, Tm). The goals of these studies are to better understand the scintillation mechanisms associated with various members of the ZnO scintillator family and to then use this knowledge to improve the radiation detection capabilities of ZnO-based scintillators. One application for which ZnO is particularly well suited as a scintillator is as the associated particle detector in a deuterium-tritium (D-T) neutron generator. Application requirements include the exclusion of organic materials, outstanding timing resolution, and high radiation resistance. ZnO:Ga and ZnO:In have demonstrated fast (subnanosecond) decay times with relatively low light yields, and ZnO(Ga) has been used in a powder form as the associated particle detector for a D-T neutron generator. Four promising candidate materials, ZnO, ZnO:Ga, ZnO:In,Li, and ZnO:Er,Li, were identified in this study. These four samples demonstrated sub-nanosecond decay times and alpha-particle-excited- luminescence comparable to BC-400 fast plastic scintillator. The ZnO:Mg,Ga, ZnO:Gd, and ZnO:Li samples demonstrated appreciable slow (microsecond) decay components that would be incompatible with high-counting-rate applications.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.